215 research outputs found

    Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants

    Get PDF
    Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons. However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant, which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power comparable to or greater than another existing method closely related to some recently proposed methods. We conclude that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for devising powerful association tests in sequence data with rare variants

    A random forest approach to the detection of epistatic interactions in case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The key roles of epistatic interactions between multiple genetic variants in the pathogenesis of complex diseases notwithstanding, the detection of such interactions remains a great challenge in genome-wide association studies. Although some existing multi-locus approaches have shown their successes in small-scale case-control data, the "combination explosion" course prohibits their applications to genome-wide analysis. It is therefore indispensable to develop new methods that are able to reduce the search space for epistatic interactions from an astronomic number of all possible combinations of genetic variants to a manageable set of candidates.</p> <p>Results</p> <p>We studied case-control data from the viewpoint of binary classification. More precisely, we treated single nucleotide polymorphism (SNP) markers as categorical features and adopted the random forest to discriminate cases against controls. On the basis of the gini importance given by the random forest, we designed a sliding window sequential forward feature selection (SWSFS) algorithm to select a small set of candidate SNPs that could minimize the classification error and then statistically tested up to three-way interactions of the candidates. We compared this approach with three existing methods on three simulated disease models and showed that our approach is comparable to, sometimes more powerful than, the other methods. We applied our approach to a genome-wide case-control dataset for Age-related Macular Degeneration (AMD) and successfully identified two SNPs that were reported to be associated with this disease.</p> <p>Conclusion</p> <p>Besides existing pure statistical approaches, we demonstrated the feasibility of incorporating machine learning methods into genome-wide case-control studies. The gini importance offers yet another measure for the associations between SNPs and complex diseases, thereby complementing existing statistical measures to facilitate the identification of epistatic interactions and the understanding of epistasis in the pathogenesis of complex diseases.</p

    Dynamic force microscopy for imaging of viruses under physiological conditions

    Get PDF
    Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized

    Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy

    Get PDF
    Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56 ± 16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35% ± 17%) than responders [18 ± 10%, p = 0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rho = 0.63, p = 0.0298; AUC = 0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115 ± 0.112) than responders (0.034 ± 0.030, p = 0.0171; AUC = 0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT

    Microsurgery can cure most intracranial dural arteriovenous fistulae of the sinus and non-sinus type

    Get PDF
    There is consensus that intracranial dural arteriovenous fistulae (dAVF) with direct (non-sinus-type) or indirect (sinus-type) retrograde filling of a leptomeningeal vein should be treated due to the high risk of neurological deficits and hemorrhage. No consensus exists on treatment modality (surgery and/or embolization) and, if surgery is performed, on the best surgical strategy. This series aims to evaluate the role of surgery in the management of aggressive dAVFs. Forty-two patients underwent surgery. Opening and packing the sinus with thrombogenic material was performed in 9 of the 12 sinus-type dAVFs. In two sinus-type fistulae of the cavernous sinus and 1 of the torcular, microsurgery was used as prerequisite for subsequent embolization by providing access to the sinus. In the 30 non-sinus-type dAVFs, surgery consisted of interruption of the draining vein at the intradural entry point. In 41 patients undergoing 43 operations, elimination of the dAVF was achieved (97.6%). In one case, a minimal venous drainage persisted after surgery. The transient surgical morbidity was 11.9% (n = 5) and the permanent surgical morbidity 7.1% (n = 3). Our surgical strategy was to focus on the arterialized leptomeningeal vein in the non-sinus-type and on the arterialized sinus segment in the sinus-type dAVFs allowing us to obliterate all but one dAVF with a low morbidity rate. We therefore propose that microsurgery should be considered early in the treatment of both types of aggressive dAVFs. In selected cases of cavernous sinus dAVFs, the role of microsurgery is reduced to that of an adjunct to endovascular therapy

    Multislice CT angiography in the selection of patients with ruptured intracranial aneurysms suitable for clipping or coiling

    Get PDF
    Introduction We sought to establish whether CT angiography (CTA) can be applied to the planning and performance of clipping or coiling in ruptured intracranial aneurysms without recourse to intraarterial digital subtraction angiography (IA-DSA). Methods Over the period April 2003 to January 2006 in all patients presenting with a subarachnoid haemorrhage CTA was performed primarily. If CTA demonstrated an aneurysm, coiling or clipping was undertaken. IA-DSA was limited to patients with negative or inconclusive CTA findings. We compared CTA images with findings at surgery or coiling in patients with positive CTA findings and in patients with negative and inconclusive findings in whom IA-DSA had been performed. Results In this study, 224 consecutive patients (mean age 52.7 years, 135 women) were included. In 133 patients (59%) CTA demonstrated an aneurysm, and CTA was followed directly by neurosurgical (n=55) or endovascular treatment (n=78). In 31 patients (14%) CTA findings were categorized as inconclusive, and in 60 (27%) CTA findings were negative. One patient received surgical treatment on the basis of false-positive CTA findings. In 17 patients in whom CTA findings were inconclusive, IA-DSA provided further diagnostic information required for correct patient selection for any therapy. Five ruptured aneurysms in patients with a nonperimesencephalic SAH were negative on CTA, and four of these were also false-negative on IA-DSA. On a patient basis the positive predictive value, negative predictive value, sensitivity, specificity and accuracy of CTA for symptomatic aneurysms were 99%, 90%, 96%, 98% and 96%, respectively. Conclusion CTA should be used as the first diagnostic modality in the selection of patients for surgical or endovascular treatment of ruptured intracranial aneurysms. If CTA renders inconclusive results, IA-DSA should be performed. With negative CTA results the complementary value of IA-DSA is marginal. IA-DSA is not needed in patients with negative CTA and classic perimesencephalic SAH. Repeat IA-DSA or CTA should still be performed in patients with a nonperimesencephalic SAH

    Exome Sequencing Identifies ZNF644 Mutations in High Myopia

    Get PDF
    Myopia is the most common ocular disorder worldwide, and high myopia in particular is one of the leading causes of blindness. Genetic factors play a critical role in the development of myopia, especially high myopia. Recently, the exome sequencing approach has been successfully used for the disease gene identification of Mendelian disorders. Here we show a successful application of exome sequencing to identify a gene for an autosomal dominant disorder, and we have identified a gene potentially responsible for high myopia in a monogenic form. We captured exomes of two affected individuals from a Han Chinese family with high myopia and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30× and sufficient depth to call variants at ∼97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. A mutation A672G in zinc finger protein 644 isoform 1 (ZNF644) was identified as being related to the phenotype of this family. After we performed sequencing analysis of the exons in the ZNF644 gene in 300 sporadic cases of high myopia, we identified an additional five mutations (I587V, R680G, C699Y, 3′UTR+12 C>G, and 3′UTR+592 G>A) in 11 different patients. All these mutations were absent in 600 normal controls. The ZNF644 gene was expressed in human retinal and retinal pigment epithelium (RPE). Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, mutation may cause the axial elongation of eyeball found in high myopia patients. Our results suggest that ZNF644 might be a causal gene for high myopia in a monogenic form

    Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity

    Get PDF
    Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays
    corecore